Unraveling the properties of fluid metallic hydrogen could help scientists unlock the mysteries of Jupiter’s formation and internal structure. Credit: Mark Meamber, LLNL.
Washington, DC—Lab-based mimicry allowed an international team of physicists including Carnegie’s Alexander Goncharov to probe hydrogen under the conditions found in the interiors of...
Explore this Story
This image shows an example of defects in the development of the embryonic central nervous system in stored eggs that lacked the Fmr1 gene.
Baltimore, MD—New work from Carnegie’s Ethan Greenblatt and Allan Spradling reveals that the genetic factors underlying fragile X syndrome, and potentially other autism-related disorders...
Explore this Story
Burke adjusting recording instruments at a Carnegie radio receiver truck. Photo: DTM Archives, via the Baltimore Sun.
Bernard Burke, distinguished MIT astrophysicist and former staff scientist at Carnegie's Department of Terrestrial Magnetism, died August 5. He was 90.  Burke, who joined the department...
Explore this Story
Washington, D.C.—Observatories NASA Hubble Postdoctoral Fellow Maria Drout will receive the tenth Postdoctoral Innovation and Excellence Award (PIE). These awards are made through nominations...
Explore this Story
New research, led by former Carnegie postdoctoral fellow Summer Praetorius, shows that changes in the heat flow of the northern Pacific Ocean may have a larger effect on the Arctic climate than...
Explore this Story
Pasadena, CA—What happens when a star behaves like it exploded, but it’s still there? About 170 years ago, astronomers witnessed a major outburst by Eta Carinae, the brightest known star...
Explore this Story
Robin Martin and Katie Kryston search the Spectranomics Library for a species. Photo by Greg Asner.
Washington, DC—Last week, the Natural Sciences and Engineering Research Council of Canada announced a multimillion dollar grant to support the launch of the Canadian Airborne...
Explore this Story
: A blue, boron-bearing diamond with dark inclusions of a mineral called ferropericlase, which were examined as part of this study.  This gem weighs 0.03 carats.  Photo by Evan Smith/GIA.
Washington, DC—Blue diamonds—like the world-famous Hope Diamond at the National Museum of Natural History—formed up to four times deeper in the Earth’s mantle than most other...
Explore this Story
Seagrass. California, Channel Islands NMS. Claire Fackler, CINMS, NOAA.
Washington, DC—Seagrass meadows could play a limited, localized role in alleviating ocean acidification in coastal ecosystems, according to new work led by Carnegie’s David Koweek and...
Explore this Story
Baltimore MD—Almost half of our DNA sequences are made up of jumping genes—also known as transposons. They jump around the genome in developing sperm and egg cells and are important to...
Explore this Story
An illustration showing how the orbits of the newly discovered moons (bold) fit into the known orbital groupings of the Jovian moons (not bold). The "oddball" with the proposed name Valetudo orbits in the prograde, but crosses the orbits of the planet's o
Washington, DC—Twelve new moons orbiting Jupiter have been found—11 “normal” outer moons, and one that they’re calling an “oddball.”  This brings...
Explore this Story
This artist’s impression shows the temperate planet Ross 128 b, with its red dwarf parent star in the background. It is provided courtesy of ESO/M. Kornmesser.
Pasadena, CA—Last autumn, the world was excited by the discovery of an exoplanet called Ross 128 b, which is just 11 light years away from Earth. New work from a team led by Diogo Souto of...
Explore this Story
Nitrogen is the dominant gas in Earth’s atmosphere, where it is most-commonly bonded with itself in diatomic N2 molecules. New work indicate that it becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep insi
Washington, DC—New work from a team led by Carnegie’s Alexander Goncharov confirms that nitrogen, the dominant gas in Earth’s atmosphere, becomes a metallic fluid when subjected to...
Explore this Story
An artist’s conception of a radio jet spewing out fast-moving material from the newly discovered quasar. Artwork by Robin Dienel, courtesy of Carnegie Institution for Science.
Pasadena, CA—Carnegie’s Eduardo Bañados led a team that found a quasar with the brightest radio emission ever observed in the early universe, due to it spewing out a jet of...
Explore this Story
Dr. Eric D. Isaacs begins his tenure as the 11th president of the Carnegie Institution on July 2, 2018.  Isaacs joins Carnegie from the University of Chicago where he has been the...
Explore this Story
Washington, DC—Carbon dioxide emissions from human activities must approach zero within several decades to avoid risking grave damage from the effects of climate change.  This will require...
Explore this Story
Baltimore, MD—A tremendous amount of genetic material must be packed into the nucleus of every cell—a tiny compartment. One of the biggest challenges in biology is to understand how...
Explore this Story
Washington, DC—A team of scientists including Carnegie’s Michael Ackerson and Bjørn Mysen revealed that granites from Yosemite National Park contain minerals that crystallized at...
Explore this Story
Washington, DC— Carnegie’s Greg Asner advanced through a venture capital-style pitch group challenge to win a $250,000 grant from Battery Powered that will enable his flying laboratory...
Explore this Story
Washington, DC—New work from an international team of astronomers including Carnegie’s Jaehan Bae used archival radio telescope data to develop a new method for finding very young...
Explore this Story
Washington, DC— NASA’s Curiosity rover has discovered new “tough” organic molecules in three-billion-year-old sedimentary rocks on Mars, increasing the chances that the record...
Explore this Story
Washington, DC—A team of scientists led by Carnegie’s Shaunna Morrison and including Bob Hazen have revealed the mineralogy of Mars at an unprecedented scale, which will help them...
Explore this Story
Washington, DC—Carnegie scientist Greg Asner and his Reefscape Project play a crucial role in a new partnership that’s responding to the crisis facing the world’s coral reefs and...
Explore this Story
  Washington, DC—Un grupo de astrónomos del Observatorio Las Campanas, de Carnegie, incluyendo a Mark Phillips y Guillermo Blanc, junto a Miguel Roth de la Organización...
Explore this Story
Washington, DC—A group of astronomers from Carnegie’s Las Campanas Observatory including Mark Phillips and Guillermo Blanc, along with Miguel Roth from the Giant Magellan Telescope...
Explore this Story

Pages