Astronomy Stories
Scientists, including researchers from the Carnegie Institution for Science, discuss the search for extrasolar planets. This video is provided courtesy of NASA.
Explore this Story
Yuri Beletsky's recent image of  the lunar eclipse at  Carnegie's Las Campanas Observatory has been published by NASA as the Astronomy Picture of the Day, October 1, 2015. The...
Explore this Story
Popular Mechanics: Clyde Tombaugh still discovered the dwarf planet, but this is the latest "precovery" image to be unearthed....
Explore this Story
Pasadena, CA— Astronomer and instrumentation expert Stephen Shectman of the Carnegie Observatories has been selected to receive the Maria and Eric Muhlmann Award from the Astronomical Society...
Explore this Story
Ben Shappee, Hubble, Carnegie-Princeton Fellow, summarizes results for the Shappee et al. paper, "The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-Time Observations, First-...
Explore this Story
Slate's Bad Astronomy says a photo of Orion's M43 nebula by Carnegie's Yuri Beletsky and Igor Chilingarian of the Harvard–Smithsonian Center for Astrophysics might be...
Explore this Story
With the New Horizons historic flyby of Pluto next week, imagine how excited we were a few weeks ago to unearth a set of plates from 1925 in our vault that include Pluto--five years before Pluto was...
Explore this Story

Pages

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
We are all made of stardust. Almost all of the chemical elements were produced by nuclear reactions in the interiors of stars. When a star dies a fraction of the elements is released into the inter-stellar gas clouds, out of which successive generations of stars form.  Astronomers have a basic...
Meet this Scientist
Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile...
Meet this Scientist
Juna Kollmeier’s research is an unusual combination—she is as observationally-oriented theorist making predictions that can be compared to current and future observations. Her primary focus is on the emergence of structure in the universe. She combines cosmological hydrodynamic...
Meet this Scientist
You May Also Like...
The lightest few elements in the periodic table formed minutes after the Big Bang.  Heavier chemical elements are created by stars, either from nuclear fusion in their interiors or in...
Explore this Story
Pasadena, CA— The Astronomical Society of the Pacific (ASP) has announced that the Carnegie Observatories’ postdoctoral associate Rachael Beaton will receive the 2016 Robert J. Trumpler Award. In...
Explore this Story
"The Moon needs no introduction ... To the layman, not versed in astrophysics, the Moon is the most-conspicuous object in the night sky and the rival of all heavenly objects, even including the Sun...
Explore this Story

Explore Carnegie Science

This artist's impression of the quasar P172+18. Credit: ESO/M. Kornmesser.
March 8, 2021

Pasadena, CA— The Magellan Baade telescope at Carnegie’s Las Campanas Observatory played an important role in the discovery of the most-distant known quasar with a bright radio emission, which was announced by a Max Planck Institute for Astronomy in Heidelberg and European Southern Observatory-led team and published in The Astrophysical Journal. One of the fastest-growing supermassive black holes ever observed, it is emitting about 580 times the energy as the entire Milky Way galaxy.

Quasars are incredibly luminous supermassive black holes accreting matter at the centers of massive galaxies. Their brightness allows astronomers to study them in detail even at great

3D spatial distribution of 16 spectroscopically confirmed proto-clusters.
February 12, 2021

Las Campanas Observatory—When the universe was about 350 million years old it was dark: there were no stars or galaxies, only neutral gas—mainly hydrogen—the residue of the Big Bang. That foggy period began to clear as atoms clumped together to form the first stars and the first quasars, causing the gas to ionize and high-energy photons to travel freely through space. 

This epoch, called the “reionization” epoch, lasted about 370 million years and the first large structures in the universe appear as groups or clusters of galaxies. 

An international team of astronomers grouped in the LAGER consortium (Lyman Alpha Galaxies in the Epoch

Vicinity of Tucana II ultra-faint dwarf galaxy. Credit: Anirudh Chiti/MIT.
February 1, 2021

Pasadena, CA—An MIT-led team of astronomers that includes Carnegie’s Joshua Simon, Lina Necib, and Alexander Ji has discovered an unexpected outer suburb of stars on the distant fringes of the dwarf galaxy Tucana II. Their detection, published by Nature Astronomy, confirms that the cosmos’ oldest galaxies formed inside massive clumps of dark matter—what astronomers refer to as a “dark matter halo."

Our own Milky Way is surrounded by a cadre of orbiting dwarf galaxies—relics of the ancient universe. A new technique developed by lead author Anirudh Chiti of MIT extended the astronomers’ reach and revealed never-before-seen stars on the

A giant star being slowly devoured by a black hole courtesy of NASA Goddard.
January 12, 2021

Pasadena, CA—In a case of cosmic mistaken identity, an international team of astronomers revealed that what they once thought was a supernova is actually periodic flaring from a galaxy where a supermassive black hole gives off bursts of energy every 114 days as it tears off chunks of an orbiting star.

Six years after its initial discovery—reported in The Astronomer’s Telegram by Carnegie’s Thomas Holoien—the researchers, led by Anna Payne of University of Hawai’i at Mānoa, can now say that the phenomenon they observed, called ASASSN-14ko, is a periodically recurring flare from the center of a galaxy more than 570 million light-years away in the

No content in this section.

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

John Mulchaey is the director and the Crawford H. Greenewalt Chair of the Carnegie Observatories. He investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also a scientific editor for The Astrophysical Journal and is actively involved in public outreach and education.

Most galaxies including our own Milky Way, exist in collections known as groups, which are the most common galaxy systems and are important laboratories for studying galaxy formation and evolution. Mulchaey studies galaxy groups to understand the processes that affect most

Galacticus is not a super hero; it’s a super model used to determine the formation and evolution of the galaxies. Developed by Andrew Benson, the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics, it is one of the most advanced models of galaxy formation available.

Rather than building his model around observational data, Benson’s Galacticus relies on known laws of physics and the so-called N-body problem, which predicts the motions of celestial bodies that interact gravitationally in groups. Galacticus’ now an open- source model produces results as stunning 3-D videos.

Some 80% of the matter in the universe cannot be seen. This unseen

The earliest galaxies are those that are most distant. Staff associate Dan Kelson is interested in how these ancient relics evolved. The latest generation of telescopes and advanced spectrographs—instruments that analyze light to determine properties of celestial objects—allow astronomers to accurately measure enormous numbers of distant galaxies. Kelson uses the Magellan 6.5-meter telescopes and high-resolution imaging from the Hubble Space Telescope to study distant galaxies.His observations of their masses, sizes and morphologies allow him to directly measure their stars' aging to infer their formation history. Kelson is the principal investigator of the Carnegie-

Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile, and the first of two cameras for the Magellan Baade telescope. Magellan consortium astronomers use the Baade camera for various IR-imaging projects, while his group focuses on distant galaxies and supernovae.

Until recently, it was difficult to find large numbers of galaxies at near-IR wavelengths. But significant advances in the size of IR detector arrays have allowed the Persson group