Astronomy Stories
November 6, 2014 Inflationary cosmology gives a very plausible explanation for many features of our universe, including its uniformity, its mass density, and the patterns of the ripples that are...
Explore this Story
Astronomer and photographer Yuri Beletsky captured today's lunar eclipse from Carnegie's Las Campanas Observatory...
Explore this Story
September 29, 2014 An AxS Festival Program presented by The Carnegie Observatories and Pasadena Conservatory of Music AxS [ak-sis] is a two-week citywide festival produced by the Pasadena Arts...
Explore this Story
AudioWashington, D.C.—New modeling studies from Carnegie’s Alan Boss demonstrate that most of the stars we see were formed when unstable...
Explore this Story
AudioPasadena, CA—Quasars are supermassive black holes that live at the center of distant massive galaxies. They shine as the most luminous...
Explore this Story
Washington, D.C.—A team of scientists led by Carnegie's Jacqueline Faherty has discovered the first evidence of water ice clouds on an...
Explore this Story
Pasadena, CA —The board of directors of the Giant Magellan Telescope Organization (GMTO) has informed the National Science Foundation (NSF) that they will not participate in an upcoming funding...
Explore this Story
Carnegie Institution Observatories researchers are featured in Astronomy Magazine ...
Explore this Story

Pages

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been...
Explore this Project
The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http...
Explore this Project
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas...
Meet this Scientist
Guillermo Blanc wants to understand the processes by which galaxies form and evolve over the course of the history of the universe. He studies local galaxies in the “present day” universe as well as very distant and therefore older galaxies to observe the early epochs of galaxy...
Meet this Scientist
You May Also Like...
The lightest few elements in the periodic table formed minutes after the Big Bang.  Heavier chemical elements are created by stars, either from nuclear fusion in their interiors or in...
Explore this Story
Washington, D.C.—A team of scientists led by Carnegie's Jacqueline Faherty has discovered the first evidence of water ice clouds on an object outside of our own Solar System. Water ice clouds exist...
Explore this Story
Washington, D.C.—Astronomers have discovered an extremely cool object that could have a particularly diverse history—although it is now as cool as a planet, it may have spent much of its youth as hot...
Explore this Story

Explore Carnegie Science

This artist's impression of the quasar P172+18. Credit: ESO/M. Kornmesser.
March 8, 2021

Pasadena, CA— The Magellan Baade telescope at Carnegie’s Las Campanas Observatory played an important role in the discovery of the most-distant known quasar with a bright radio emission, which was announced by a Max Planck Institute for Astronomy in Heidelberg and European Southern Observatory-led team and published in The Astrophysical Journal. One of the fastest-growing supermassive black holes ever observed, it is emitting about 580 times the energy as the entire Milky Way galaxy.

Quasars are incredibly luminous supermassive black holes accreting matter at the centers of massive galaxies. Their brightness allows astronomers to study them in detail even at great

3D spatial distribution of 16 spectroscopically confirmed proto-clusters.
February 12, 2021

Las Campanas Observatory—When the universe was about 350 million years old it was dark: there were no stars or galaxies, only neutral gas—mainly hydrogen—the residue of the Big Bang. That foggy period began to clear as atoms clumped together to form the first stars and the first quasars, causing the gas to ionize and high-energy photons to travel freely through space. 

This epoch, called the “reionization” epoch, lasted about 370 million years and the first large structures in the universe appear as groups or clusters of galaxies. 

An international team of astronomers grouped in the LAGER consortium (Lyman Alpha Galaxies in the Epoch

Vicinity of Tucana II ultra-faint dwarf galaxy. Credit: Anirudh Chiti/MIT.
February 1, 2021

Pasadena, CA—An MIT-led team of astronomers that includes Carnegie’s Joshua Simon, Lina Necib, and Alexander Ji has discovered an unexpected outer suburb of stars on the distant fringes of the dwarf galaxy Tucana II. Their detection, published by Nature Astronomy, confirms that the cosmos’ oldest galaxies formed inside massive clumps of dark matter—what astronomers refer to as a “dark matter halo."

Our own Milky Way is surrounded by a cadre of orbiting dwarf galaxies—relics of the ancient universe. A new technique developed by lead author Anirudh Chiti of MIT extended the astronomers’ reach and revealed never-before-seen stars on the

A giant star being slowly devoured by a black hole courtesy of NASA Goddard.
January 12, 2021

Pasadena, CA—In a case of cosmic mistaken identity, an international team of astronomers revealed that what they once thought was a supernova is actually periodic flaring from a galaxy where a supermassive black hole gives off bursts of energy every 114 days as it tears off chunks of an orbiting star.

Six years after its initial discovery—reported in The Astronomer’s Telegram by Carnegie’s Thomas Holoien—the researchers, led by Anna Payne of University of Hawai’i at Mānoa, can now say that the phenomenon they observed, called ASASSN-14ko, is a periodically recurring flare from the center of a galaxy more than 570 million light-years away in the

No content in this section.

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

Anthony Piro is the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics at the Carnegie Observatories. He is a theoretical astrophysicist studying compact objects, astrophysical explosions, accretion flows, and stellar dynamics. His expertise is in nuclear physics, thermodynamics, condensed matter physics, General Relativity, and fluid and magneto-hydrodanmics. He uses this background  to predict new observational phenomena as well as to understand the key underlying physical mechanisms responsible for current observations. He uses a combination of analytic and simple numerical models to build physical intuition for complex phenomena.

Piro recieved his 

Juna Kollmeier’s research is an unusual combination—she is as observationally-oriented theorist making predictions that can be compared to current and future observations. Her primary focus is on the emergence of structure in the universe. She combines cosmological hydrodynamic simulations and analytic theory to figure out how the tiny fluctuations in density that were present when the universe was only 300 thousand years old, become the galaxies and black holes that we see now, after 14 billion years of cosmic evolution. 

 She has a three-pronged approach to unravelling the mysteries of the universe. On the largest scales, she studies the intergalactic

Rebecca Bernstein combines observational astronomy with developing new instruments and techniques to study her objects of interest. She focuses on formation and evolution of galaxies by studying the chemistry of objects called extra galactic globular clusters—old, spherical compact groups of stars that are gravitationally bound. She also studies the stellar components of clusters of galaxies and is engaged in various projects related to dark matter and dark energy—the invisible matter and repulsive force that make up most of the universe.

 Although Bernstein joined Carnegie as a staff scientist in 2012, she has had a long history of spectrographic and imaging

Guillermo Blanc wants to understand the processes by which galaxies form and evolve over the course of the history of the universe. He studies local galaxies in the “present day” universe as well as very distant and therefore older galaxies to observe the early epochs of galaxy evolution. Blanc conducts a series of research projects on the properties of young and distant galaxies, the large-scale structure of the universe, the nature of Dark Energy—the mysterious repulsive force, the process of star formation at galactic scales, and the measurement of chemical abundances in galaxies.

To conduct this work, he takes a multi-wavelength approach including