Astronomy Stories
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Roberto Marcos Molar
Washington, DC—A team of astronomers led by Carnegie’s Meredith MacGregor and Alycia Weinberger detected a massive stellar flare—an energetic explosion of radiation—from the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, European Southern Observatory
Pasadena, CA— A star about 100 light years away in the Pisces constellation, GJ 9827, hosts what may be one of the most massive and dense super-Earth planets detected to date, according to new...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA, Larry Nittler
Washington, DC— Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it...
Explore this Story
National Harbor, MD—How far away is that galaxy?  Our entire understanding of the Universe is based on knowing the distances to other galaxies, yet this seemingly-simple question turns out...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Sloan Digital Sky Survey, SDSS-IV
National Harbor, MD—Astronomers with the Sloan Digital Sky Survey (SDSS) have learned that the chemical composition of a star can exert unexpected influence on...
Explore this Story
Pasadena, CA— A team of astronomers led by Carnegie’s Eduardo Bañados used Carnegie’s Magellan telescopes to discover the most-distant supermassive black hole ever observed....
Explore this Story
SN2015J, a very bright and peculiar supernova, which initially did not have a certain home, now has received its happy ending.  Discovered on April 27, 2015, by the Siding Springs Observatory in...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Robin Dienel, SDSS-V, Sloan Digital Sky Survey
Pasadena, CA— The next generation of the Sloan Digital Sky Survey (SDSS-V), directed by Carnegie’s Juna Kollmeier, will move forward with mapping the entire sky following a $16 million...
Explore this Story

Pages

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been...
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the...
Explore this Project
The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
Josh Simon uses observations of nearby galaxies to study problems related to dark matter, chemical evolution, star formation, and the process of galaxy evolution. In one area he looks at peculiarly dark galaxies. Interestingly, some galaxies are so dark they glow with the light of just a few...
Meet this Scientist
Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life. Alexander studies meteorites to determine what went on before...
Meet this Scientist
Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse...
Meet this Scientist
You May Also Like...
Pasadena, CA- John Mulchaey has been appointed the new Crawford H. Greenewalt Director of the Carnegie Observatories. He is the eleventh director of the historic department, which was founded in 1904...
Explore this Story
Leading scientists, senior officials, and supporters from an international consortium of universities and research institutions are gathering on a remote mountaintop high in the Chilean Andes today...
Explore this Story
Popular Mechanics: Clyde Tombaugh still discovered the dwarf planet, but this is the latest "precovery" image to be unearthed. More
Explore this Story

Explore Carnegie Science

This artist's impression of the quasar P172+18. Credit: ESO/M. Kornmesser.
March 8, 2021

Pasadena, CA— The Magellan Baade telescope at Carnegie’s Las Campanas Observatory played an important role in the discovery of the most-distant known quasar with a bright radio emission, which was announced by a Max Planck Institute for Astronomy in Heidelberg and European Southern Observatory-led team and published in The Astrophysical Journal. One of the fastest-growing supermassive black holes ever observed, it is emitting about 580 times the energy as the entire Milky Way galaxy.

Quasars are incredibly luminous supermassive black holes accreting matter at the centers of massive galaxies. Their brightness allows astronomers to study them in detail even at great

3D spatial distribution of 16 spectroscopically confirmed proto-clusters.
February 12, 2021

Las Campanas Observatory—When the universe was about 350 million years old it was dark: there were no stars or galaxies, only neutral gas—mainly hydrogen—the residue of the Big Bang. That foggy period began to clear as atoms clumped together to form the first stars and the first quasars, causing the gas to ionize and high-energy photons to travel freely through space. 

This epoch, called the “reionization” epoch, lasted about 370 million years and the first large structures in the universe appear as groups or clusters of galaxies. 

An international team of astronomers grouped in the LAGER consortium (Lyman Alpha Galaxies in the Epoch

Vicinity of Tucana II ultra-faint dwarf galaxy. Credit: Anirudh Chiti/MIT.
February 1, 2021

Pasadena, CA—An MIT-led team of astronomers that includes Carnegie’s Joshua Simon, Lina Necib, and Alexander Ji has discovered an unexpected outer suburb of stars on the distant fringes of the dwarf galaxy Tucana II. Their detection, published by Nature Astronomy, confirms that the cosmos’ oldest galaxies formed inside massive clumps of dark matter—what astronomers refer to as a “dark matter halo."

Our own Milky Way is surrounded by a cadre of orbiting dwarf galaxies—relics of the ancient universe. A new technique developed by lead author Anirudh Chiti of MIT extended the astronomers’ reach and revealed never-before-seen stars on the

A giant star being slowly devoured by a black hole courtesy of NASA Goddard.
January 12, 2021

Pasadena, CA—In a case of cosmic mistaken identity, an international team of astronomers revealed that what they once thought was a supernova is actually periodic flaring from a galaxy where a supermassive black hole gives off bursts of energy every 114 days as it tears off chunks of an orbiting star.

Six years after its initial discovery—reported in The Astronomer’s Telegram by Carnegie’s Thomas Holoien—the researchers, led by Anna Payne of University of Hawai’i at Mānoa, can now say that the phenomenon they observed, called ASASSN-14ko, is a periodically recurring flare from the center of a galaxy more than 570 million light-years away in the

No content in this section.

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

Globular clusters are spherical systems of some 100,000  gravitationally bound stars. They are among the oldest components of our galaxy and are key to understanding the age and scale of the universe. Previous measurements of their distances have compared the characteristics of different types of stars in the solar neighborhood with the same types of stars found in the clusters. However, these measurements have systematic errors, which limit the determination of cluster ages and distances.

 Ian Thompson has a different approach to the problem: using observations of exceedingly rare Detached Eclipsing Binary stars. These systems have two separated stars orbiting each

Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie Origins Postdoctoral Fellow—a joint position between Carnegie’s Department of Terrestrial Magnetism (now part of EPL) and the Carnegie Observatories.

Teske is interested in the diversity in exoplanet compositions and the origins of that diversity. She uses observations to estimate exoplanet interior and atmospheric compositions, and the chemical environments of their formation

While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar Doppler velocities, from 300 meters per second in the 1980s to 1 meter a second in the 2010s to detect planets around other stars. The ultimate goal is to find planets that resemble the Earth.

Butler designed and built the iodine absorption cell system at Lick Observatory, which resulted in the discovery of 5 of the first 6 known extrasolar planets.  This instrument has become the de

Galacticus is not a super hero; it’s a super model used to determine the formation and evolution of the galaxies. Developed by Andrew Benson, the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics, it is one of the most advanced models of galaxy formation available.

Rather than building his model around observational data, Benson’s Galacticus relies on known laws of physics and the so-called N-body problem, which predicts the motions of celestial bodies that interact gravitationally in groups. Galacticus’ now an open- source model produces results as stunning 3-D videos.

Some 80% of the matter in the universe cannot be seen. This unseen