Carnegie mineralogist Robert Hazen
Washington, DC—Carnegie Mineralogist Robert Hazen—who advanced the concept that Earth’s geology was shaped by the rise and sustenance of life—will be honored with the 2022...
Explore this Story
 Photo of inclusions in a super-deep diamond by Evan Smith/© 2021 GIA
Washington, DC— The cause of Earth’s deepest earthquakes has been a mystery to science for more than a century, but a team of Carnegie scientists may have cracked the case. New research...
Explore this Story
A violent stellar flare erupting on Proxima Centauri. Credit: NRAO/S. Dagnello.
Washington, DC— A team of astronomers including Carnegie’s Alycia Weinberger and former-Carnegie postdoc Meredith MacGregor, now an assistant professor at the University of Colorado...
Explore this Story
Lava deposits in Leilani Estates (Credit: B. Shiro, USGS)
Washington, DC— The 2018 eruption of Kīlauea Volcano in Hawai‘i provided scientists with an unprecedented opportunity to identify new factors that could help forecast the hazard potential...
Explore this Story
CLIPPIR diamonds by Robert Weldon, copyright GIA, courtesy Gem Diamonds Ltd.
Washington, DC— Diamonds that formed deep in the Earth’s mantle contain evidence of chemical reactions that occurred on the seafloor. Probing these gems can help geoscientists understand...
Explore this Story
Mars mosaic courtesy of NASA
Washington, DC— Carnegie’s Yingwei Fei is the namesake of an iron-titanuim oxide mineral discovered in a meteorite that originated on Mars. Caltech’s Chi Ma announced the find this...
Explore this Story
The Moon. Credit: Lick Observatory/ESA/Hubble
Washington, DC — Volcanic rock samples collected during NASA’s Apollo missions bear the isotopic signature of key events in the early evolution of the Moon, a new analysis found. Those...
Explore this Story
Artist's conception of Farfarout. Credit: NOIRLab/NSF/AURA/J. da Silva.
Washington, DC—A team of astronomers, including Carnegie’s Scott Sheppard, David Tholen from the University of Hawaiʻi Institute for Astronomy, and Chad Trujillo from Northern Arizona...
Explore this Story

Pages

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In...
Explore this Project
The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique...
Explore this Project
Alan Linde is trying to understand the tectonic activity that is associated with earthquakes and volcanos, with the hope of helping predictions methods.  He uses highly sensitive data that measures how the Earth is changing below the surface with devises called borehole strainmeters that...
Meet this Scientist
Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this...
Meet this Scientist
Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates...
Meet this Scientist
You May Also Like...
New work from an international team of astronomers including Carnegie’s Jaehan Bae used archival radio telescope data to develop a new method for finding very young extrasolar planets. Of...
Explore this Story
Washington, DC— New work from Carnegie’s Alan Boss offers a potential solution to a longstanding problem in the prevailing theory of how rocky planets formed in our own Solar System, as well as in...
Explore this Story
Carnegie’s Yingwei Fei is the namesake of an iron-titanuim oxide mineral discovered in a meteorite that originated on Mars. Caltech’s Chi Ma announced the find this week at the Lunar and...
Explore this Story

Explore Carnegie Science

Carnegie mineralogist Robert Hazen
May 28, 2021

Washington, DC—Carnegie Mineralogist Robert Hazen—who advanced the concept that Earth’s geology was shaped by the rise and sustenance of life—will be honored with the 2022 International Mineralogical Association’s Medal for Excellence. The prize recognizes “outstanding scientific publication in the field of mineralogical sciences.”

The medal was created to honor a lifetime of achievement in and outstanding contributions to the fields of mineralogy, geochemistry, petrology, crystallography, and applied mineralogy.  Hazen will be its 11th recipient.

A Staff Scientist at Carnegie’s Earth and Planets Laboratory, Hazen

 Photo of inclusions in a super-deep diamond by Evan Smith/© 2021 GIA
May 26, 2021

Washington, DC— The cause of Earth’s deepest earthquakes has been a mystery to science for more than a century, but a team of Carnegie scientists may have cracked the case.

New research published in AGU Advances provides evidence that fluids play a key role in deep-focus earthquakes—which occur between 300 and 700 kilometers below the planet’s surface. The research team includes Carnegie scientists Steven Shirey, Lara Wagner, Peter van Keken, and Michael Walter, as well as the University of Alberta’s Graham Pearson.

Most earthquakes occur close to the Earth’s surface, down to about 70 kilometers.  They happen when stress builds up at

A violent stellar flare erupting on Proxima Centauri. Credit: NRAO/S. Dagnello.
April 21, 2021

Washington, DC— A team of astronomers including Carnegie’s Alycia Weinberger and former-Carnegie postdoc Meredith MacGregor, now an assistant professor at the University of Colorado Boulder, spotted an extreme outburst, or flare, from the Sun’s nearest neighbor—the star Proxima Centauri.

Their work, which could help guide the search for life beyond our Solar System, is published in The Astrophysical Journal Letters.

Proxima Centauri is a “red dwarf” with about one-eighth the mass of our Sun, which sits just four light-years, or almost 25 trillion miles, from the center of our Solar System and hosts at least two planets, one of which may

Lava deposits in Leilani Estates (Credit: B. Shiro, USGS)
April 7, 2021

Washington, DC— The 2018 eruption of Kīlauea Volcano in Hawai‘i provided scientists with an unprecedented opportunity to identify new factors that could help forecast the hazard potential of future eruptions.

The properties of the magma inside a volcano affect how an eruption will play out. In particular, the viscosity of this molten rock is a major factor in influencing how hazardous an eruption could be for nearby communities.

Very viscous magmas are linked with more powerful explosions because they can block gas from escaping through vents, allowing pressure to build up inside the volcano’s plumbing system. On the other hand, extrusion of more viscous

No content in this section.

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. They are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry,

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive

Geochemist and director of Terrestrial Magnetism, now known as the Earth and Planets Laboratory, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s continental crust.

 Most all of the chemical diversity in the universe comes from the nuclear reactions inside stars, in a process called nucleosynthesis. To answer his questions, Carlson developes novel procedures using instruments called mass spectrometers to make precise measurements of isotopes--atoms of an element with different numbers of

Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie Origins Postdoctoral Fellow—a joint position between Carnegie’s Department of Terrestrial Magnetism (now part of EPL) and the Carnegie Observatories.

Teske is interested in the diversity in exoplanet compositions and the origins of that diversity. She uses observations to estimate exoplanet interior and atmospheric compositions, and the chemical environments of their formation

Andrew Steele uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. Astrobiology is the search for the origin and distribution of life in the universe. A microbiologist by training, his principle interest is in developing protocols, instrumentation, and procedures for life detection in samples from the early Earth and elsewhere in the Solar System.

Steele has developed several instrument and mission concepts for future Mars missions and became involved in the 2011 Mars Science Laboratory mission as a member of the Sample Analysis at Mars (SAM) team. For  a number of years he journeyed to