Washington, D.C.— A new planet-hunting survey has revealed planetary candidates with orbital periods as short as four hours and so close to their host stars that they are nearly skimming the stellar...
Explore this Story
Washington, D.C.—Hydrocarbons from the Earth make up the oil and gas that heat our homes and fuel our cars. The study of the various phases of molecules formed from carbon and hydrogen under high...
Explore this Story
AudioWashington, D.C.—Comets and meteorites contain clues to our solar system's earliest days. But some of the findings are puzzle pieces that...
Explore this Story
Washington, D.C.—A team of astronomers, including Carnegie’s Paul Butler, has combined new observations with existing data to reveal a solar system packed full of planets. The star Gliese 667C is...
Explore this Story
Washington, D.C.—Although many many planets have been discovered around other stars, reseaerchers so far have not found any solar systems like  ours. In fact recently,  a team of researchers has...
Explore this Story
Washington, D.C.—Using revolutionary new techniques, a team led by Carnegie’s Malcolm Guthrie has made a striking discovery about how ice behaves under pressure, changing ideas that date back almost...
Explore this Story
Washington, D.C.—Forecasting volcanic eruptions with success is heavily dependent on recognizing well-established patterns of pre-eruption unrest in the monitoring data. But in order to develop...
Explore this Story

Pages

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In...
Explore this Project
Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of...
Explore this Project
Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet...
Explore this Project
Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond...
Meet this Scientist
Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics...
Meet this Scientist
Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also...
Meet this Scientist
You May Also Like...
Carnegie scientists Michael Walter and Robert Hazen have been elected 2019 Fellows of the American Geophysical Union. Fellows are recognized for visionary leadership and scientific excellence that...
Explore this Story
Washington, D.C.— An international team of scientists, including Carnegie’s Paul Butler, has discovered that Tau Ceti, one of the closest and most Sun-like stars, may have five planets. Their work is...
Explore this Story
Planet-hunting is an ongoing process that’s resulting in the discovery of more and more planets orbiting distant stars. But as the hunters learn more about the variety among the tremendous...
Explore this Story

Explore Carnegie Science

Carnegie mineralogist Robert Hazen
May 28, 2021

Washington, DC—Carnegie Mineralogist Robert Hazen—who advanced the concept that Earth’s geology was shaped by the rise and sustenance of life—will be honored with the 2022 International Mineralogical Association’s Medal for Excellence. The prize recognizes “outstanding scientific publication in the field of mineralogical sciences.”

The medal was created to honor a lifetime of achievement in and outstanding contributions to the fields of mineralogy, geochemistry, petrology, crystallography, and applied mineralogy.  Hazen will be its 11th recipient.

A Staff Scientist at Carnegie’s Earth and Planets Laboratory, Hazen

 Photo of inclusions in a super-deep diamond by Evan Smith/© 2021 GIA
May 26, 2021

Washington, DC— The cause of Earth’s deepest earthquakes has been a mystery to science for more than a century, but a team of Carnegie scientists may have cracked the case.

New research published in AGU Advances provides evidence that fluids play a key role in deep-focus earthquakes—which occur between 300 and 700 kilometers below the planet’s surface. The research team includes Carnegie scientists Steven Shirey, Lara Wagner, Peter van Keken, and Michael Walter, as well as the University of Alberta’s Graham Pearson.

Most earthquakes occur close to the Earth’s surface, down to about 70 kilometers.  They happen when stress builds up at

A violent stellar flare erupting on Proxima Centauri. Credit: NRAO/S. Dagnello.
April 21, 2021

Washington, DC— A team of astronomers including Carnegie’s Alycia Weinberger and former-Carnegie postdoc Meredith MacGregor, now an assistant professor at the University of Colorado Boulder, spotted an extreme outburst, or flare, from the Sun’s nearest neighbor—the star Proxima Centauri.

Their work, which could help guide the search for life beyond our Solar System, is published in The Astrophysical Journal Letters.

Proxima Centauri is a “red dwarf” with about one-eighth the mass of our Sun, which sits just four light-years, or almost 25 trillion miles, from the center of our Solar System and hosts at least two planets, one of which may

Lava deposits in Leilani Estates (Credit: B. Shiro, USGS)
April 7, 2021

Washington, DC— The 2018 eruption of Kīlauea Volcano in Hawai‘i provided scientists with an unprecedented opportunity to identify new factors that could help forecast the hazard potential of future eruptions.

The properties of the magma inside a volcano affect how an eruption will play out. In particular, the viscosity of this molten rock is a major factor in influencing how hazardous an eruption could be for nearby communities.

Very viscous magmas are linked with more powerful explosions because they can block gas from escaping through vents, allowing pressure to build up inside the volcano’s plumbing system. On the other hand, extrusion of more viscous

No content in this section.

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. They are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry,

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

Roiling cauldrons of liquid-laden material flow within Earth’s rocky interior. Understanding how this matter moves and changes is essential to deciphering Earth’s formation and evolution as well as the processes that create seismic activity, such as earthquakes and volcanoes. Bjørn Mysen probes this hidden environment in the laboratory and, based on his results, models can help explain what goes on in this remote realm.

Mysen investigates changes in the atomic properties of molten silicates at high pressures and temperatures that pervade the interior Earth. Silicates comprise most of the Earth's crust and mantle. He uses devices, such as the diamond anvil

Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in our Solar System, which allow us to understand how the Solar System came to be.

The major planets in our Solar System travel around the Sun in fairly circular orbits and on similar planes. However, since the discovery of wildly varying planetary systems around other stars, and given our increased understanding about small, primordial bodies in our celestial neighborhood, the notion that

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-

While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar Doppler velocities, from 300 meters per second in the 1980s to 1 meter a second in the 2010s to detect planets around other stars. The ultimate goal is to find planets that resemble the Earth.

Butler designed and built the iodine absorption cell system at Lick Observatory, which resulted in the discovery of 5 of the first 6 known extrasolar planets.  This instrument has become the de