Heart Reef in Australia's Great Barrier Reef, public domain.
Baltimore, MD— The CRISPR/Cas9 genome editing system can help scientists understand, and possibly improve, how corals respond to the environmental stresses of climate change. Work led by...
Explore this Story
Orange peyssonnelid algal crusts courtesy of Peter Edmunds.
Baltimore, MD—Human activity endangers coral health around the world. A new algal threat is taking advantage of coral’s already precarious situation in the Caribbean and making it even...
Explore this Story
Baltimore, MD— Recently published work from Carnegie’s Allan Spradling and Wanbao Niu revealed in unprecedented detail the genetic instructions immature egg cells go through step by step...
Explore this Story
Baltimore, MD— Recent work led by Carnegie’s Kamena Kostova revealed a new quality control system in the protein production assembly line with possible implications for understanding...
Explore this Story
Coral and legume roots. New staff scientists study symbiosis in these systems.
Baltimore, MD— Carnegie’s Department of Embryology welcomes two new Staff Scientists, both of whom specialize in researching the symbiotic relationships between species. Brittany Belin...
Explore this Story
Experimental zebrafish larvae, courtesy Navid Marvi.
Baltimore, MD—New work led by Carnegie’s Meredith Wilson and Steve Farber identifies a potential therapeutic target for clogged arteries and other health risks that stem from an excess of...
Explore this Story
Xenia in Carnegie's coral facility, courtesy Carnegie Embryology
Baltimore, MD— New work from a team of Carnegie cell, genomic, and developmental biologists solves a longstanding marine science mystery that could aid coral conservation. The researchers...
Explore this Story
Yixian Zheng
Baltimore, MD— Carnegie’s Director of Embryology Yixian Zheng is one of 15 scientists awarded a grant from the...
Explore this Story

Pages

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and...
Explore this Project
The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB). Much of the work makes use of the giant...
Explore this Project
Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by...
Meet this Scientist
Phillip Cleves’ Ph.D. research was on determining the genetic changes that drive morphological evolution. He used the emerging model organism, the stickleback fish, to map genetic changes that control skeletal evolution. Using new genetic mapping and reverse genetic tools developed during his...
Meet this Scientist
Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question...
Meet this Scientist
You May Also Like...
Nutrition and metabolism are closely linked with reproductive health. Several reproductive disorders have been linked to malnutrition, diabetes, and obesity. Furthermore, fasting in numerous species...
Explore this Story
New work led by Carnegie’s Steven Farber, with help from Yixian Zheng’s lab, sheds light on how form follows function for intestinal cells responding to high-fat foods that are rich in...
Explore this Story
A tremendous amount of genetic material must be packed into the nucleus of every cell—a tiny compartment. One of the biggest challenges in biology is to understand how certain regions of this...
Explore this Story

Explore Carnegie Science

Heart Reef in Australia's Great Barrier Reef, public domain.
December 21, 2020

Baltimore, MD— The CRISPR/Cas9 genome editing system can help scientists understand, and possibly improve, how corals respond to the environmental stresses of climate change. Work led by Phillip Cleves—who joined Carnegie’s Department of Embryology this fall—details how the revolutionary, Nobel Prize-winning technology can be deployed to guide conservation efforts for fragile reef ecosystems.

Cleves’ research team’s findings were recently published in two papers in the Proceedings of the National Academy of Sciences.

Corals are marine invertebrates that build extensive calcium carbonate skeletons from which reefs are constructed. But this

Orange peyssonnelid algal crusts courtesy of Peter Edmunds.
November 30, 2020

Baltimore, MD—Human activity endangers coral health around the world. A new algal threat is taking advantage of coral’s already precarious situation in the Caribbean and making it even harder for reef ecosystems to grow.

Just-published research in Scientific Reports details how an aggressive, golden-brown, crust-like alga is rapidly overgrowing shallow reefs, taking the place of coral that was damaged by extreme storms and exacerbating the damage caused by ocean acidification, disease, pollution, and bleaching.

For the past four years, the University of Oxford’s Bryan Wilson, Carnegie’s Chen‑Ming Fan, and California State University Northridge’

October 8, 2020

Baltimore, MD— Recently published work from Carnegie’s Allan Spradling and Wanbao Niu revealed in unprecedented detail the genetic instructions immature egg cells go through step by step as they mature into functionality. Their findings improve our understanding of how ovaries maintain a female’s fertility.

The general outline of how immature egg cells are assisted by specific ovarian helper cells starting even before a female is born is well understood. But Spradling and Niu mapped the gene activity of thousands of immature egg cells and helper cells to learn how the stage is set for fertility later in life.

Even before birth, "germ" cells

October 8, 2020

Baltimore, MD— Recent work led by Carnegie’s Kamena Kostova revealed a new quality control system in the protein production assembly line with possible implications for understanding neurogenerative disease.

The DNA that comprises the chromosomes housed in each cell’s nucleus encodes the recipes for how to make proteins, which are responsible for the majority of the physiological actions that sustain life. Individual recipes are transcribed using messenger RNA, which carries this piece of code to a piece of cellular machinery called the ribosome. The ribosome translates the message into amino acids—the building blocks of proteins.

But sometimes

No content in this section.

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg development, called oogenesis, which promises to provide insight into the rejuvenation of the nucleus and surrounding cytoplasm. By studying ovarian stem cells, they are learning how cells maintain an undifferentiated state and how cell production is regulated by microenvironments known as niches. They are  also re-investigating the role of steroid and prostaglandin hormones in controlling

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements.  RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.  

The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing factors, is needed before messenger RNA (mRNA) can be exported to the cytoplasm, the area surrounding the nucleus.

Although the biochemical details of transcription and RNA processing are known, relatively little is understood about their cellular organization. Joseph G. Gall has been an intellectual leader and has made seminal breakthroughs in our understanding of chromosomes, nuclei and

Yixian Zheng is Director of the Department of Embryology. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells differentiate into their final cell forms. They use a wide range of tools, including genetics in different model organisms, cell culture, biochemistry, proteomics, and genomics.

Cell division is essential for all organisms to grow and live. During a specific time in a cell’s cycle the elongated apparatus consisting of string-like micro-tubules called the spindle is assembled to

Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30,000 human genes, 98% of DNA sequences are comprised of repetitive and regulatory sequences within and between genes. Measuring the specific set of DNA sequences that are transcribed into RNA helps reveal what and how our tissues are doing by showing which genes are active.

Modern sequencing platforms, such as the Illumina HiSeq 2000, generate only short, ordered sequences, usually 100