Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Baltimore, MD— The brain is the body’s mission control center, sending messages to the other organs about how to respond to various external and internal stimuli. Located in the forebrain...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Washington, D.C.--Yixian Zheng has been selected to direct Carnegie’s Department of Embryology in Baltimore, Maryland. She has been Acting Director since February 1st of 2016. Carnegie...
Explore this Story
Washington, D.C.—BioEYES was accepted to participate in a National Science Foundation (NSF) video competition on May 15-22, 2017. BioEYES supporters are encouraged to go to the competition...
Explore this Story
On Tuesday night, George Church told us that a fascination with animatronic Abraham Lincoln at the 1964 World’s Fair partially inspired him to become a scientist. This seems fitting, somehow,...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Baltimore, MD—Studying how our bodies metabolize lipids such as fatty acids, triglycerides, and cholesterol can teach us about cardiovascular disease, diabetes, and other health problems, as...
Explore this Story
People often call dogs “man’s best friend.” But after Elaine Ostrander’s presentation at our Washington, DC, headquarters Thursday, we think that moniker should probably be...
Explore this Story
Baltimore, MD—A first-of-its-kind study on almost 20,000 K-12 underrepresented public school students shows that Project BioEYES, based at Carnegie’s Department of Embryology, is...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Baltimore, MD— New work led by Carnegie’s Steven Farber, with help from Yixian Zheng’s lab, sheds light on how form follows function for intestinal cells responding to high-fat...
Explore this Story

Pages

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous...
Explore this Project
The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB). Much of the work makes use of the giant...
Explore this Project
Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by...
Meet this Scientist
Steven Farber
In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and...
Meet this Scientist
Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question...
Meet this Scientist
You May Also Like...
Baltimore, MD— The ability of embryonic stem cells to differentiate into different types of cells with different functions is regulated and maintained by a complex series of chemical interactions,...
Explore this Story
Washington, D.C.—BioEYES was accepted to participate in a National Science Foundation (NSF) video competition on May 15-22, 2017. BioEYES supporters are encouraged to go to the competition website at...
Explore this Story
Matthew Sieber, a postdoctoral fellow at the Department of Embryology, has been honored for his extraordinary accomplishments, through a new program that recognizes exceptional Carnegie...
Explore this Story

Explore Carnegie Science

Heart Reef in Australia's Great Barrier Reef, public domain.
December 21, 2020

Baltimore, MD— The CRISPR/Cas9 genome editing system can help scientists understand, and possibly improve, how corals respond to the environmental stresses of climate change. Work led by Phillip Cleves—who joined Carnegie’s Department of Embryology this fall—details how the revolutionary, Nobel Prize-winning technology can be deployed to guide conservation efforts for fragile reef ecosystems.

Cleves’ research team’s findings were recently published in two papers in the Proceedings of the National Academy of Sciences.

Corals are marine invertebrates that build extensive calcium carbonate skeletons from which reefs are constructed. But this

Orange peyssonnelid algal crusts courtesy of Peter Edmunds.
November 30, 2020

Baltimore, MD—Human activity endangers coral health around the world. A new algal threat is taking advantage of coral’s already precarious situation in the Caribbean and making it even harder for reef ecosystems to grow.

Just-published research in Scientific Reports details how an aggressive, golden-brown, crust-like alga is rapidly overgrowing shallow reefs, taking the place of coral that was damaged by extreme storms and exacerbating the damage caused by ocean acidification, disease, pollution, and bleaching.

For the past four years, the University of Oxford’s Bryan Wilson, Carnegie’s Chen‑Ming Fan, and California State University Northridge’

October 8, 2020

Baltimore, MD— Recently published work from Carnegie’s Allan Spradling and Wanbao Niu revealed in unprecedented detail the genetic instructions immature egg cells go through step by step as they mature into functionality. Their findings improve our understanding of how ovaries maintain a female’s fertility.

The general outline of how immature egg cells are assisted by specific ovarian helper cells starting even before a female is born is well understood. But Spradling and Niu mapped the gene activity of thousands of immature egg cells and helper cells to learn how the stage is set for fertility later in life.

Even before birth, "germ" cells

October 8, 2020

Baltimore, MD— Recent work led by Carnegie’s Kamena Kostova revealed a new quality control system in the protein production assembly line with possible implications for understanding neurogenerative disease.

The DNA that comprises the chromosomes housed in each cell’s nucleus encodes the recipes for how to make proteins, which are responsible for the majority of the physiological actions that sustain life. Individual recipes are transcribed using messenger RNA, which carries this piece of code to a piece of cellular machinery called the ribosome. The ribosome translates the message into amino acids—the building blocks of proteins.

But sometimes

No content in this section.

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg development, called oogenesis, which promises to provide insight into the rejuvenation of the nucleus and surrounding cytoplasm. By studying ovarian stem cells, they are learning how cells maintain an undifferentiated state and how cell production is regulated by microenvironments known as niches. They are  also re-investigating the role of steroid and prostaglandin hormones in controlling

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements.  RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.  

Brittany Belin joined the Department of Embryology staff in August 2020. Her Ph.D. research involved developing new tools for in vivo imaging of actin in cell nuclei. Actin is a major structural element in eukaryotic cells—cells with a nucleus and organelles —forming contractile polymers that drive muscle contraction, the migration of immune cells to  infection sites, and the movement of signals from one part of a cell to another. Using the tools developed in her Ph.D., Belin discovered a new role for actin in aiding the repair of DNA breaks in human cells caused by carcinogens, UV light, and other mutagens.

Belin changed course for her postdoctoral work, in

Phillip Cleves’ Ph.D. research was on determining the genetic changes that drive morphological evolution. He used the emerging model organism, the stickleback fish, to map genetic changes that control skeletal evolution. Using new genetic mapping and reverse genetic tools developed during his Ph.D., Cleves identified regulatory changes in a protein called bone morphogenetic protein 6 that were responsible for an evolved increase in tooth number in stickleback. This work illustrated how molecular changes can generate morphological novelty in vertebrates.

Cleves returned to his passion for coral research in his postdoctoral work in John Pringles’ lab at Stanford

The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the musculoskeletal system to develop in the mammalian embryo. Skin, muscle, cartilage, and bone are all derived from a group of progenitor structures called somites. Various growth factors—molecules that stimulate the growth of cells—in the surrounding tissues work in concert to signal each somitic cell to differentiate into a specific tissue type.

The lab has identified various growth