A new Venture Grant has been awarded to the Geophysical Laboratory’s Dionysis Foustoukos and Sue Rhee of the Department of Plant Biology, with colleague Costantino Vetriani of Rutgers...
Explore this Story
Unraveling the properties of fluid metallic hydrogen could help scientists unlock the mysteries of Jupiter’s formation and internal structure. Credit: Mark Meamber, LLNL.
Washington, DC—Lab-based mimicry allowed an international team of physicists including Carnegie’s Alexander Goncharov to probe hydrogen under the conditions found in the interiors of...
Explore this Story
Nitrogen is the dominant gas in Earth’s atmosphere, where it is most-commonly bonded with itself in diatomic N2 molecules. New work indicate that it becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep insi
Washington, DC—New work from a team led by Carnegie’s Alexander Goncharov confirms that nitrogen, the dominant gas in Earth’s atmosphere, becomes a metallic fluid when subjected to...
Explore this Story
Washington, D.C.--Venkata Srinu Bhadram in Timothy Strobel’s lab at the Geophysical Laboratory (GL) will receive the ninth Postdoctoral Innovation and Excellence Award (PIE). These awards are...
Explore this Story
Washington, DC—Interim Co-Presidents John Mulchaey and Yixian Zheng are thrilled to welcome experimental petrologist Michael Walter as the new Director of Carnegie's Geophysical Laboratory...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Timothy Strobel
Washington, DC—A team of scientists including Carnegie’s Tim Strobel and Venkata Bhadram now report unexpected quantum behavior of hydrogen molecules, H2, trapped within tiny cages made...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Alexander Goncharov, Hanyu Liu, Elissaios Stavrou, Sergey Lobanov, Yansun Yao, Joseph Zaug, Eran Greenberg, Vitali Prakapenka
Washington, DC—The paradox of the missing xenon might sound like the title of the latest airport thriller, but it’s actually a problem that’s stumped geophysicists for decades. New...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Chuanlong Lin, Guoyin Shen
Washington, DC—Water makes up more than 70 percent of our planet's surface and up to 60 percent of our bodies. Water is so common that we take it for granted. Yet water also has very...
Explore this Story

Pages

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and...
Meet this Scientist
Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
You May Also Like...
Washington, DC— Hydrogen is the most-abundant element in the universe. It’s also the simplest—sporting only a single electron in each atom. But that simplicity is deceptive, because there is still so...
Explore this Story
Washington, D.C.—Hydrogen is the most abundant element in the universe. The way it responds under extreme pressures and temperatures is crucial to our understanding of matter and the nature of...
Explore this Story
Anat Shahar was awarded the Clarke Award of the Geochemical Society. It is awarded to an early-career scientist for " a single outstanding contribution to geochemistry or cosmochemistry, published...
Explore this Story

Explore Carnegie Science

CLIPPIR diamonds by Robert Weldon, copyright GIA, courtesy Gem Diamonds Ltd.
March 31, 2021

Washington, DC— Diamonds that formed deep in the Earth’s mantle contain evidence of chemical reactions that occurred on the seafloor. Probing these gems can help geoscientists understand how material is exchanged between the planet’s surface and its depths.  

New work published in Science Advances confirms that serpentinite—a rock that forms from peridotite, the main rock type in Earth’s mantle, when water penetrates cracks in the ocean floor—can carry surface water as far as 700 kilometers deep by plate tectonic processes.

“Nearly all tectonic plates that make up the seafloor eventually bend and slide down into the mantle

Stock image of the transition metals section of the periodic table
July 1, 2020

Washington, DC— You’ve heard the expression form follows function? In materials science, function follows form.

New research by Carnegie’s Olivier Gagné and collaborator Frank Hawthorne of the University of Manitoba categorizes the causes of structural asymmetry, some surprising, which underpin useful properties of crystals, including ferroelectricity, photoluminescence, and photovoltaic ability. Their findings are published this week as a lead article in the International Union of Crystallography Journal.

“Understanding how different bond arrangements convey various useful attributes is central to the materials sciences” explained

April 15, 2020

Washington, DC— Carnegie mineralogist Robert Hazen was inducted last month as a foreign member of the Russian Academy of Sciences—the nation’s highest-level scientific society, originally founded by Peter the Great. This is a rare honor for an American researcher.

The ceremony, originally scheduled for the end of March, was postponed by the COVID-19 pandemic.

A Staff Scientist at Carnegie’s Earth and Planets Laboratory, Hazen pioneered the concept of mineral evolution—linking an explosion in mineral diversity to the rise of life on Earth—and developed  the idea of mineral ecology—which analyzes the spatial distribution of the

Carbon-boron clathrate cage with strontium inside, courtesy Tim Strobel
January 10, 2020

Washington, DC— A long-sought-after class of “superdiamond” carbon-based materials with tunable mechanical and electronic properties was predicted and synthesized by Carnegie’s Li Zhu and Timothy Strobel. Their work is published by Science Advances.

Carbon is the fourth-most-abundant element in the universe and is fundamental to life as we know it. It is unrivaled in its ability to form stable structures, both alone and with other elements.

A material’s properties are determined by how its atoms are bonded and the structural arrangements that these bonds create. For carbon-based materials, the type of bonding makes the difference between the

No content in this section.

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural changes and phase transitions in materials at conditions that mimic impacts and the interiors of terrestrial and exoplanets. She is also an expert in nuclear resonant scattering and synchrotron X-ray diffraction. She uses these techniques to understand novel behavior at the electronic level.  Tracy received her Ph.D. from the California Institute of

Timothy Strobel subjects materials to high-pressures to understand chemical processes  and interactions, and to create new, advanced energy-related materials.

For instance, silicon is the second most abundant element in the Earth’s crust and a mainstay of the electronics industry. But normal silicon is not optimal for solar energy. In its conventional crystalline form, silicon is relatively inefficient at absorbing the wavelengths most prevalent in sunlight.  Strobel made a discovery that may turn things around.  Using the high-pressure techniques pioneered at Carnegie, he created a novel form of silicon with its atoms arranged in a cage-like structure. Unlike

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical

Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and develop new materials with potential applications to energy.

In one area Goncharov is pursuing the holy grail of materials science, whether hydrogen can exist in an electrically conducting  metallic state as predicted by theory. He is also interested in understanding the different phases materials undergo as they transition under different pressure and temperature conditions to