Washington, DC—New work from a research team led by Carnegie’s Anat Shahar contains some unexpected findings about iron chemistry under high-pressure conditions, such as those likely...
Explore this Story
Washington, DC—If you freeze any liquid fast enough, even liquid metal, it becomes a glass. Vitrified metals, or metallic glasses, are at the frontier of materials science research. They have...
Explore this Story
We are missing aat least 145 carbon-bearing minerals and you can help find them. Smithsonian Magazine covers the Carbon Mineral Challenge, launched by Robert Hazen and Daniel Hummer at The American...
Explore this Story
Washington, DC— As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their...
Explore this Story
Washington, DC—Colossal magnetoresistance is a property with practical applications in a wide array of electronic tools including magnetic sensors and magnetic RAM. New research from a team...
Explore this Story
Alexander Goncharov's experiment on noble gases could give new insight into the interiors of gas giant planets says Scientific American....
Explore this Story
Colossal magnetoresistance is a property with practical applications in a wide array of electronic tools including magnetic sensors and magnetic RAM. New research from a team including Carnegie...
Explore this Story
New work from Carnegie’s Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure.
Explore this Story

Pages

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural...
Meet this Scientist
Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. The lab recently merged with the Department of Terrestrial Magnetism  forming the Earth and Planets Laboratory, where he is deputy director. His recent research has focused...
Meet this Scientist
Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond...
Meet this Scientist
You May Also Like...
Washington, DC— Hydrogen is the most-abundant element in the universe. It’s also the simplest—sporting only a single electron in each atom. But that simplicity is deceptive, because there is still so...
Explore this Story
 An entirely new class of “superdiamond” carbon-based materials with tunable mechanical and electronic properties was predicted and synthesized by Carnegie’s Li Zhu and Timothy...
Explore this Story
Washington, D.C.—Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. This phenomenon can only be found in...
Explore this Story

Explore Carnegie Science

CLIPPIR diamonds by Robert Weldon, copyright GIA, courtesy Gem Diamonds Ltd.
March 31, 2021

Washington, DC— Diamonds that formed deep in the Earth’s mantle contain evidence of chemical reactions that occurred on the seafloor. Probing these gems can help geoscientists understand how material is exchanged between the planet’s surface and its depths.  

New work published in Science Advances confirms that serpentinite—a rock that forms from peridotite, the main rock type in Earth’s mantle, when water penetrates cracks in the ocean floor—can carry surface water as far as 700 kilometers deep by plate tectonic processes.

“Nearly all tectonic plates that make up the seafloor eventually bend and slide down into the mantle

Stock image of the transition metals section of the periodic table
July 1, 2020

Washington, DC— You’ve heard the expression form follows function? In materials science, function follows form.

New research by Carnegie’s Olivier Gagné and collaborator Frank Hawthorne of the University of Manitoba categorizes the causes of structural asymmetry, some surprising, which underpin useful properties of crystals, including ferroelectricity, photoluminescence, and photovoltaic ability. Their findings are published this week as a lead article in the International Union of Crystallography Journal.

“Understanding how different bond arrangements convey various useful attributes is central to the materials sciences” explained

April 15, 2020

Washington, DC— Carnegie mineralogist Robert Hazen was inducted last month as a foreign member of the Russian Academy of Sciences—the nation’s highest-level scientific society, originally founded by Peter the Great. This is a rare honor for an American researcher.

The ceremony, originally scheduled for the end of March, was postponed by the COVID-19 pandemic.

A Staff Scientist at Carnegie’s Earth and Planets Laboratory, Hazen pioneered the concept of mineral evolution—linking an explosion in mineral diversity to the rise of life on Earth—and developed  the idea of mineral ecology—which analyzes the spatial distribution of the

Carbon-boron clathrate cage with strontium inside, courtesy Tim Strobel
January 10, 2020

Washington, DC— A long-sought-after class of “superdiamond” carbon-based materials with tunable mechanical and electronic properties was predicted and synthesized by Carnegie’s Li Zhu and Timothy Strobel. Their work is published by Science Advances.

Carbon is the fourth-most-abundant element in the universe and is fundamental to life as we know it. It is unrivaled in its ability to form stable structures, both alone and with other elements.

A material’s properties are determined by how its atoms are bonded and the structural arrangements that these bonds create. For carbon-based materials, the type of bonding makes the difference between the

No content in this section.

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from

Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. The lab recently merged with the Department of Terrestrial Magnetism  forming the Earth and Planets Laboratory, where he is deputy director. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical

Timothy Strobel subjects materials to high-pressures to understand chemical processes  and interactions, and to create new, advanced energy-related materials.

For instance, silicon is the second most abundant element in the Earth’s crust and a mainstay of the electronics industry. But normal silicon is not optimal for solar energy. In its conventional crystalline form, silicon is relatively inefficient at absorbing the wavelengths most prevalent in sunlight.  Strobel made a discovery that may turn things around.  Using the high-pressure techniques pioneered at Carnegie, he created a novel form of silicon with its atoms arranged in a cage-like structure. Unlike