December 12, 2014 Hydrogen is the most-abundant element in the cosmos. With only a single electron per atom, it is deceptively simple. As a result, hydrogen has been a testing ground for theories of...
Explore this Story
Washington, D.C.—Silicon is the second most-abundant element in the earth's crust. When purified, it takes on a diamond structure, which is essential to modern electronic devices—...
Explore this Story
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to...
Explore this Story
Tiny cages hold big promise. Understanding the chemical reactions that can create tiny molecular cages that hold other “guest” molecules—structures called clathrates—is key to...
Explore this Story
Minerals Love Life It was not until recently that scientists even thought about how the mineral kingdom may have changed over time. Traditionally classified by composition, structure, and other...
Explore this Story
Washington, D.C. —A key to understanding Earth’s evolution is to look deep into the lower mantle—a region some 400 to 1,800 miles (660 to 2,900 kilometers) below the surface, just...
Explore this Story
Washington, D.C.— Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As...
Explore this Story
Washington, D.C.— A team including Carnegie’s Malcolm Guthrie and George Cody has, for the first time, discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties...
Explore this Story

Pages

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
Timothy Strobel subjects materials to high-pressures to understand chemical processes  and interactions, and to create new, advanced energy-related materials. For instance, silicon is the second most abundant element in the Earth’s crust and a mainstay of the electronics industry. But...
Meet this Scientist
You May Also Like...
New work from a team led by Carnegie's Alexander Goncharov confirms that nitrogen, the dominant gas in Earth’s atmosphere, becomes a metallic fluid when subjected to the extreme pressure and...
Explore this Story
Pressure improves lead selenide's ability to turn heat into electricity and could potentially be used to create clean energy generators, according to new work from a team that includes Carnegie...
Explore this Story
The paradox of the missing xenon might sound like the title of the latest airport thriller, but it’s actually a problem that’s stumped geophysicists for decades.  New work from a...
Explore this Story

Explore Carnegie Science

CLIPPIR diamonds by Robert Weldon, copyright GIA, courtesy Gem Diamonds Ltd.
March 31, 2021

Washington, DC— Diamonds that formed deep in the Earth’s mantle contain evidence of chemical reactions that occurred on the seafloor. Probing these gems can help geoscientists understand how material is exchanged between the planet’s surface and its depths.  

New work published in Science Advances confirms that serpentinite—a rock that forms from peridotite, the main rock type in Earth’s mantle, when water penetrates cracks in the ocean floor—can carry surface water as far as 700 kilometers deep by plate tectonic processes.

“Nearly all tectonic plates that make up the seafloor eventually bend and slide down into the mantle

Stock image of the transition metals section of the periodic table
July 1, 2020

Washington, DC— You’ve heard the expression form follows function? In materials science, function follows form.

New research by Carnegie’s Olivier Gagné and collaborator Frank Hawthorne of the University of Manitoba categorizes the causes of structural asymmetry, some surprising, which underpin useful properties of crystals, including ferroelectricity, photoluminescence, and photovoltaic ability. Their findings are published this week as a lead article in the International Union of Crystallography Journal.

“Understanding how different bond arrangements convey various useful attributes is central to the materials sciences” explained

April 15, 2020

Washington, DC— Carnegie mineralogist Robert Hazen was inducted last month as a foreign member of the Russian Academy of Sciences—the nation’s highest-level scientific society, originally founded by Peter the Great. This is a rare honor for an American researcher.

The ceremony, originally scheduled for the end of March, was postponed by the COVID-19 pandemic.

A Staff Scientist at Carnegie’s Earth and Planets Laboratory, Hazen pioneered the concept of mineral evolution—linking an explosion in mineral diversity to the rise of life on Earth—and developed  the idea of mineral ecology—which analyzes the spatial distribution of the

Carbon-boron clathrate cage with strontium inside, courtesy Tim Strobel
January 10, 2020

Washington, DC— A long-sought-after class of “superdiamond” carbon-based materials with tunable mechanical and electronic properties was predicted and synthesized by Carnegie’s Li Zhu and Timothy Strobel. Their work is published by Science Advances.

Carbon is the fourth-most-abundant element in the universe and is fundamental to life as we know it. It is unrivaled in its ability to form stable structures, both alone and with other elements.

A material’s properties are determined by how its atoms are bonded and the structural arrangements that these bonds create. For carbon-based materials, the type of bonding makes the difference between the

No content in this section.

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical

Timothy Strobel subjects materials to high-pressures to understand chemical processes  and interactions, and to create new, advanced energy-related materials.

For instance, silicon is the second most abundant element in the Earth’s crust and a mainstay of the electronics industry. But normal silicon is not optimal for solar energy. In its conventional crystalline form, silicon is relatively inefficient at absorbing the wavelengths most prevalent in sunlight.  Strobel made a discovery that may turn things around.  Using the high-pressure techniques pioneered at Carnegie, he created a novel form of silicon with its atoms arranged in a cage-like structure. Unlike

Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and develop new materials with potential applications to energy.

In one area Goncharov is pursuing the holy grail of materials science, whether hydrogen can exist in an electrically conducting  metallic state as predicted by theory. He is also interested in understanding the different phases materials undergo as they transition under different pressure and temperature conditions to

Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. The lab recently merged with the Department of Terrestrial Magnetism  forming the Earth and Planets Laboratory, where he is deputy director. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about