Winslow Briggs by Robin Kempster, courtesy Carnegie Institution for Science.
Washington, DC—The American Society of Plant Biologists (ASPB) will name a mentorship award in honor of legendary Carnegie plant scientist Winslow Briggs, who died in February.  The ASPB...
Explore this Story
Plant Cell Atlas logo
Palo Alto, CA—Do plant scientists hold the key to saving vulnerable populations in a changing climate? How should plant researchers prepare to deploy their knowledge to maintain food security...
Explore this Story
Sea anemone Aiptasia pallida. Image courtesy of Tingting Xiang.
Palo Alto, CA—What factors govern algae’s success as “tenants” of their coral hosts both under optimal conditions and when oceanic temperatures rise? A Victoria University of...
Explore this Story
A teosinte plant growing in a corn field on the Stanford University campus, courtesy of Yongxian Lu.
Palo Alto, CA— Determining how one species becomes distinct from another has been a subject of fascination dating back to Charles Darwin. New research led by Carnegie’s Matthew Evans and...
Explore this Story
Plant cells under microscope. Shutterstock.
Palo Alto, CA—Photosynthesis makes our atmosphere oxygen-rich and forms the bedrock of our food supply. But under changing or stressful environmental conditions, the photosynthetic process can...
Explore this Story
The Office of the President has selected two new Carnegie Venture Grants. Peter Driscoll of the Department of Terrestrial Magnetism and Sally June Tracy of the Geophysical Laboratory were awarded a...
Explore this Story
Chlamydomonas
Palo Alto, CA—The creation of new library of mutants of the single-celled photosynthetic green alga Chlamydomonas reinhardtii enabled a Carnegie- and Princeton University-led team of...
Explore this Story
Heather Meyer, a postdoctoral fellow in David Ehrhardt’s Plant Biology lab since 2016, has been awarded Carnegie’s twelfth Postdoctoral Innovation and Excellence Award. These prizes are...
Explore this Story

Pages

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga ...
Explore this Project
Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also...
Meet this Scientist
Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve...
Meet this Scientist
Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018. Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants...
Meet this Scientist
You May Also Like...
AudioStanford, CA—Plants spend their entire lifetime rooted to one spot. When faced with a bad situation, such as a swarm of hungry herbivores or a viral outbreak, they have no option to flee but...
Explore this Story
Carnegie’s Sue Rhee and David Ehrhardt, along with NYU’s Kenneth Birnbaum, argue that we must drastically improve our understanding of plant cell structure, function, and physiology in...
Explore this Story
"I started to wonder if I could design a course that encouraged freshmen to recognize the beauty and wealth of trees on campus? Could I meld my curiosity about the trees and rejuvenate my rusty...
Explore this Story

Explore Carnegie Science

Toxic "red tide" algal bloom. Image purchased from Shutterstock.
May 3, 2021

Palo Alto, CA—New work from a Stanford University-led team of researchers including Carnegie’s Arthur Grossman and Tingting Xiang unravels a longstanding mystery about the relationship between form and function in the genetic material of a diverse group of algae called dinoflagellates.

Their findings, published in Nature Genetics, have implications for understanding genomic organizational principles of all organisms.

Dinoflagellates include more than 2,000 species of marine and freshwater plankton, many of which are photosynthetic, and some of which also ingest other organisms for food. They play a wide variety of roles in various ecosystems, including extreme

Photo of flowering Arabidopsis thaliana purchased from Shutterstock.
February 11, 2021

Palo Alto, CA— Understanding how plants respond to stressful environmental conditions is crucial to developing effective strategies for protecting important agricultural crops from a changing climate. New research led by Carnegie’s Zhiyong Wang, Shouling Xu, and Yang Bi reveals an important process by which plants switch between amplified and dampened stress responses. Their work is published by Nature Communications.

To survive in a changing environment, plants must choose between different response strategies, which are based on both external environmental factors and internal nutritional and energy demands. For example, a plant might either delay or accelerate its

Figure from Energy and Environmental Science paper
February 1, 2021

Palo Alto, CA— What if we could increase a plant’s productivity by modifying the light to which it is exposed? This could increase the yield of important food and biofuel crops and also combat climate change by sequestering atmospheric carbon.

In a recent perspective piece in Energy and Environmental Science, Carnegie’s Arthur Grossman and Petra Redekop joined colleagues from Stanford University—Larissa Kunz, Matteo Cargnello, and Arun Majumdar—and University of Illinois Urbana Champaign’s Donald Ort to argue that specially engineered lighting modifications through the use of photoluminescent material could drive a next big leap in the green

Senna tora photo courtesy of Shutterstock.
November 24, 2020

Palo Alto, CA— Anthraquinones are a class of naturally occurring compounds prized for their medicinal properties, as well as for other applications, including ecologically friendly dyes. Despite wide interest, the mechanism by which plants produce them has remained shrouded in mystery until now.

New work from an international team of scientists including Carnegie’s Sue Rhee reveals a gene responsible for anthraquinone synthesis in plants.  Their findings could help scientists cultivate a plant-based mechanism for harvesting these useful compounds in bulk quantities.

“Senna tora is a legume with anthraquinone-based medicinal properties that have long

No content in this section.

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve, share resources. To these ends, she focuses on one-celled, aquatic cyanobacteria, in the lab with model organisms and with organisms in naturally occurring communities.

 Phototaxis is the ability of organisms to move directionally in response to a light source.  Many cyanobacteria exhibit phototaxis, both towards and away from light. The ability to move into optimal light

Matthew Evans wants to provide new tools for plant scientists to engineer better seeds for human needs. He focuses on one of the two phases to their life cycle. In the first phase, the sporophyte is the diploid generation—that is with two similar sets of chromosomes--that undergoes meiosis to produce cells called spores. Each spore divides forming a single set of chromosomes (haploid) --the gametophyte--which produces the sperm and egg cells.

Evans studies how the haploid genome is required for normal egg and sperm function. In flowering plants, the female gametophyte, called the embryo sac, consists of four cell types: the egg cell, the central cell, and two types of

Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20% of what its genes do and how or why they do it. And understanding this evolution can help develop new crop strains to adapt to climate change.  

Sue Rhee wants to uncover the molecular mechanisms underlying adaptive traits in plants to understand how these traits evolved. A bottleneck has been the limited understanding of the functions of most plant genes. Rhee’s group is

Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future