
Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements. RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.
The Bortvin lab, with colleagues, identified a key protein that suppresses jumping genes in mouse sperm and found that the protein is vital to sperm formation. It had been known previously that a similar element did this in the fruit fly. The protein, called Maelstrom, is old evolutionarily and found in many organisms. It is implicated in transposon silencing in flies and mice by means of specialized small RNAs known as Piwi-interacting RNAs (or piRNAs).
Bortvin’s group showed the critical role of transposon silencing for normal fertility of male mice. But only recently did they discover the impact of transposons on the mammalian egg precursor. The group found that mouse oocytes repress transposons inefficiently. Because of this poor transposon silencing, every oocyte stores this potent mutagen. Safia Malki in the lab correlated transposon abundance with oocyte viability and oocyte cell division reliability. She found that a burst of activity of a single transposon in transgenic mice increased oocyte death. Most strikingly, Malki improved oocyte viability and prevented errors in chromosome segregation by blocking the ability of the transposon to copy itself using a drug that blocks multiplication of HIV, the AIDS-causing virus.
This unique mode of transposon control in mouse oocytes sheds light on two puzzles—prenatal death of most oocytes and the age-related increase in chromosome errors, such as those that cause Down syndrome. Malki and Bortvin speculate that the lax control of transposons in mice, and perhaps human oocytes, causes the elimination of oocytes with either highly active transposons or those incapable of more stringent transposon control.
The surviving oocytes may prevent excessive transposon alterations to the genomes and be better suited to support the healthy development of the next generation. The Malki and Bortvin findings also suggest that an ovary of a newborn girl already contains “good” oocytes as well as those predisposed for chromosomal errors. It may be the case that “good” oocytes are ovulated during first two decades of a female’s reproductive life, while “bad” ones are ovulated later.
Bortvin received his Ph. D. in genetics from Harvard and was a postdoctoral fellow at the Whitehead Institute before joining the Carnegie staff in 2004. For more information see Bortvin lab