
The entire universe—galaxies, stars, and planets—originally condensed from a vast network of tenuous, gaseous filaments, known as the intergalactic medium, or the gaseous cosmic web. Most of the matter in this giant reservoir has never been incorporated into galaxies; it keeps floating about in intergalactic space, largely in the form of ionized hydrogen gas.
Michael Rauch is interested in all aspects of the intergalactic medium. He uses large telescopes, like the Magellans, to take spectra—light that reveals the chemical makeup of distant objects— of background quasars, which are highly energetic and extremely remote. He is looking for evidence of gas clouds located between the quasars and us. The hundreds of spectral absorption lines between us and each quasar—often referred to as the Lyman alpha forest—record changes in the cosmic web from the earliest galaxies to the present. Rauch and his collaborators have determined many of the basic properties of the intergalactic medium, including its matter density, temperature, chemistry, the small-scale density structure, and most recently, the turbulent motion in the gas.
With his theorist colleagues, Rauch has also proposed and evaluated models for the interpretation of quasar spectra in the context of galaxy formation. He has participated in an observational survey of gravitationally lensed quasars and close pairs to study the large-scale motions in the gas. He wants to understand how the cosmic web follows the general expansion of the universe, how it stretches and contracts, and how it is funneled into future galaxies. Galaxies not only take in gas, they also return processed and chemically enriched matter back to the extragalactic realm. Rauch hopes to quantify the environmental impact of galaxies on the surrounding intergalactic medium.
Rauch also is performing ultra-deep experimental searches for faint radiation emitted by very distant, so-called high redshift galaxies and by the intergalactic medium itself. These observations may ultimately allow the construction of detailed images of the distribution of matter in the young universe.
Rauch received his undergraduate degree in physics from Gutenberg University in Germany, and a Ph. D. in astronomy from Cambridge University. From 1992 to 1995 he was a research associate at Carnegie then went to Caltech as a Hubble Fellow until 1998, when he became a staff astronomer at the European Southern Observatory before joining Carnegie as a staff astronomer. For more information see http://obs.carnegiescience.edu/users/mr